ZENER DIODE SLIDE RULE CALCULATOR

INSTRUCTIONS FOR SHUNT REGULATOR COMPUTATION

STEP 1: Calculation of Ballast Resistor, Rs

Scale A-Select $(V_{1,max} - V_2)$. Scale B-Select $(I_1 + I_2)$ where I_1 is load current in amperes and I_2 is minimum zener current 10% of I_1 . Register and read R_1 in ohms on Scale C.

STEP 2: Calculation of I7 MAY

Scale D-Select $(V_{SMEZ} - V_Z)$. Scale E-Select R₅ calculated above. Register and read $(I_{ZMEZ} + I_C)$ on Scale F. Subtract I₁ and obtain I_{ZMEZ} in amperes.

STEP 3: Calculation of Press, the Thermal Dissipation

Scale G-Select zener voltage, V_z.

Scale H-Select I_{2 MAS} from above.

Register and read P_{2 MAS}, in watts, on Scale I.

STEP 4: Calculation of Heat Sink Area

Scale J–Select maximum design ambient temperature. Scale K–Select $P_{x\,\,\text{Max}}$ in watts, above calculated. Register and read θ in "C/watt on Scale N. Add ($\theta_x + \theta_1$) and subtract from θ to obtain θ_3 . Enter θ_3 on Scale N and read A_{BS} , the heat sink area, in square inches, on Scale M.

STEP 5: Calculation of Zener Voltage Change with Temperature Changes

Scale O-Select zener voltage, $V_{\rm I}$. Scale P-Select anticipated temperature change ΔT , *C. Register and read on Scale Q the regulated voltage change in millivolts.

A shunt regulator schematic, mathematical relations, table of symbols, and tables showing typical values of θ_1 and θ_2 are indicated on the front face and slide of the calculator.

To find the Motorola type number for any voltage and power reading, select the desired regulated voltage on scale. R and then move the slide slightly until either one of the two adjacent vertical lines on scale S is aligned with the pointer at the bottom of the fixed scale. The type number for the various power types will appear in the windows.

SAMPLE CALCULATIONS

22-12=10 volts (A) 2.1+.21=2.31 amps (B) R₅=4.33 ahms (Read C)

32-12=20 volts (D) R_s=4.33 ohms (E) 4.62 amps (Read F)

4.62-2.1=2.52 amps 12 valts (G) 2.52 amps (H) P_{2 Max} =30 watts (Read I)

T_{A MAX} = 50°C (J) 30 watts (K) θ = 4.15°C/watt (Read N)

 $\theta_1 = 1.0$ °C/watt $\theta_1 = 0.8$ °C/watt $\theta_3 = 4.15 - 1.8 = 2.35$ °C/watt (N) $A_{ac} = 260$ sq. in. (Read M)

V_I = 12 volts (O) ΔT = 30°C (P) 219 MV (Read Q)

Distributed by

Sample Problem – A regulated supply for a constant output current of 2.1 amperes is required. The primary power supply varies between 22 and 32 volts. The maximum design ambient is 50°C. An ambient temperature swing of 30° is anticipated. A teflon insulator with grease is used. $\theta_1 = 0.8$ °C/watt. Values – $V_{2,max} = 22$ volts, $V_{3,max} = 32$ volts, $I_4 = 14$ (.150) = 2.1 amperes. $V_2 = 12$ volts nominal zener rating. (see calculations on other side).

The (L) Scale – The thermal computation for heat sink area (Step 4) can be used for any other semi-conductor device for which the maximum allowable junction temperature, and the thermal resistance are known. For example, some Motorola Power Transistors have a T_{CLMX} of 90°C and a θ_T of 1°C/Watt. For such a computation, subtract the ambient from the rated junction maximum temperature and enter their difference on Scale L. The balance of the calculation is as outlined in Step 4.

Publication Digitized and Provided By www.StevenJohnson.com Vintage Schematics, and Publications Steve's Antique Technology