ENCYCLOPEDIA ON CATHODE-RAY OSCILLOSCOPES AND THEIR USES #### DU MONT MODEL 275-A Frequency Response 2 cps to 30,000 cps Circular Sweep Voltages are furnished from the external two-phase generator provided Circle Diameter Adjustable from 0 to 4½ inches Deflection Factor Less than 0.4 volt rms produces deflection to center of circle LINE RATING 115-230 volts, 50-60 cps #### TUBE COMPLEMENT | _ | | |--------------|-------------------------------------| | Type | Function | | 6SL7-GT (V1) | Vertical Input and Phase Inverter | | 6SJ7 (V2) | Vertical Output | | 6SJ7 (V3) | Vertical Output | | 6SL7-GT (V4) | Horizontal Input and Phase Inverter | | 6SJ7 (V5) | Horizontal Output | | 6SJ7 (V6) | Horizontal Output | | 6SN7-GT (V7) | Radial Amplifier | | 6SN7-GT (V8) | Radial Amplifier and Cathode | | | Follower | | 5CP1 (V9) | Cathode-Ray Tube | | 2X2-A(V10) | High-Voltage Rectifier | | 2X2-A (V11) | High-Voltage Rectifier | | 5Y3-GT (V12) | Low-Voltage Rectifier | | 6X5-GT (V13) | Negative-Voltage Rectifier | | OC3 (V14) | Voltage Regulator | | OC3 (V15) | Voltage Regulator | The schematic circuit diagram of Model 275-A is shown in Fig. 22-17. This instrument is of special design and construction designed primarily for the study of the various characteristics of rotating machinery. The time base in this instrument is circular and is produced in synchronism with the rotation of the machine being studied. The characteristic of the machine to be examined may be transformed into an electrical signal by means of a suitable device, and be applied to the input terminals. Its salient features will be plotted on the screen, and the relative position in the rotary cycle may be determined from the pattern. ## X- and Y-Axis Amplifiers The X and Y amplifiers are identical. Their purpose is to amplify the two 90° out-of-phase voltages furnished by the external two-phase generator. The generator voltages pass through "avc" networks composed of R4, C2, and R22, C8, before they reach the grids of the X- and Y-amplifier tubes. These networks are essentially low-pass R-C filters with resistance R much greater than the capacitive reactance in the frequency range from 5 cps and up (corresponding to generator speeds above 30 rpm). They reduce harmonics in the generator outputs to a greater degree than the fundamentals, producing relatively pure sine-wave voltages at the inputs of amplifiers V1 and V4. The low-pass networks also serve to maintain constant input voltages to the amplifiers over this same frequency range, and to maintain a 90° phase shift between generator voltages and amplifier input voltages. ## Z-Axis Circuits Modulating or timing signals may be connected to the grid of the cathode-ray tube through capacitor C1. The high-input resistance provided by R1 results in negligible loading upon the signal source. A peak-to-peak signal of 45 volts is sufficient to drive the cathode-ray tube between the limits of cutoff and zero bias, so that satisfactory beam blanking can be expected from signals having considerably small amplitude. ## Radial Deflection Circuits Radial deflection of the fluorescent spot on the screen is provided by modulating the screen grids of the deflection amplifiers, V2, V3 and V5, V6. The input to the radial amplifier may be made at terminals J7 and J8, or connector J10 to a cathode-follower stage (V7, 1st section). The output from the cathode follower is amplified by V7 (2nd section) and fed to both grids of dual-triode V8. Outputs from the V8 plates are fed, in turn, to the screen grids of the X- and Y-axis deflection amplifiers, modulating their outputs accordingly. The radial amplifier requires less than 0.4 rms volts at the input to produce deflection on the screen equal to the circle diameter. #### DU MONT MODEL 279 FREQUENCY RESPONSE Vertical Amplifier 10 cps to 100,000 cps, within 1 db Horizontal Amplifier 10 cps to 50,000 cps, within 1 db Sweep Circuit 2 to 30,000 cps LINE RATING 115-230 volts, 50-60 cps #### TUBE COMPLEMENT | Type | | Function | |-----------|---------|------------------------------------| | 6H6 (V1) | | Voltage Calibrator | | 6J5 (V2) | | Vertical Input Cathode Follower | | 6AG7 (V3, | V4) | Vertical-Deflection Output | | 6SN7 (V5 | • | Single-Sweep Diode, Phase Splitter | | 6Q5G (V6 | • | Gaseous Sweep Oscillator | | 6SL7 (V7) | • | Sweep Output Cathode Follower | | 6SN7 (V8) | | Flip-Flop Channel A | | 6J5 (V9) | , | Cathode Follower X_A | | 6AG7 (V10 | 0, V11) | Vertical Output X_A | | 6J5 (V12) | | Cathode Follower X_B | | 6AG7 (V1 | 3, V14) | Horizontal Output X_B | | 6SN7 (V1 | 5) | Sync Input and Single Sweep Bias | | 6Q5G (V1 | 6) | Gaseous Sweep Oscillator | | 6SL7 (V17 | 7) | Sweep Cathode Follower | | 6SN7 (V1 | 8) | Flip-Flop Channel B | | 6J5 (V19) | | Cathode Follower Y_{R} | | 6AG7 (V2 | 0, V21) | Vertical Output Y _B | | 5SP-A (V | 22) | Cathode-Ray Tube | | 5U4G (V2 | • | Low-Voltage Rectifier | | 6B4G (V2 | 4) | Voltage Regulator | | 6SJ7 (V25 |) | Voltage Control Tube | | OD3 (V26 | , V27) | Gaseous Regulators | | 6X5GT (V | 728) | Half-Wave Bias Rectifier | | 3B24 (V29 |)) | High-Voltage Rectifier | | 2X2A (V3 | 30) | High-Voltage Rectifier | | | | 4 | The schematic circuit diagram of Model 279 is shown in Fig. 22-18. This instrument is a specialized type intended for laboratory or scientific work. It is a dual-channel instrument, consisting essentially of two oscilloscopes in one, thus permitting comparison of two waveforms on the same or independent time scales. The instrument utilizes the type 5SP dual beam cathoderay tube. ### Circuits The two guns and their associated signal deflection circuits are referred to in Fig. 22-18 as Channel A and Channel B, respectively. The X_A channel handles the A beam horizontal deflection and the Y_A the vertical deflection for the A beam. Similarly, the B beam horizontal and vertical deflection are handled by the corresponding X_B and Y_B channels. The sync input goes to V5A which is a phase splitter. V6 is a 6Q5G gaseous-triode sweep oscillator. V5B is used as a single-sweep diode. The output of the sweep tube is fed to a cathode follower consisting of $\frac{1}{2}$ of a 6SL7, V7A. A 6SN7 (V8 for channel A, V18 for channel B), used in a flip-flop circuit with two stable operating points, is triggered by the signal produced in the plate circuit of V7B for sweep A (V17B for sweep B). This flip-flop circuit generates the intensifying gate which illuminates the screen of the cathode-ray tube during the single-sweep period and keeps the tube cut off at all other times. The first half-section is biased off by the BEAM GATE BIAS control and the second half-section is conducting normally. This results in holding the cathode-raytube grid potential below the cutoff value. The positive gate signal from the plate of V7B turns V8 on and this, in turn, cuts off V8B in whose plate circuit a positive gate is hence generated and fed directly to the grid of the cathode-ray tube, thus turning the beam on. Since the beam-gate circuit is directly coupled throughout, the gate will correspond in duration with the waveform fed into the first grid circuit from the plate of V7B. # COMMERCIAL OSCILLOSCOPES AND RELATED EQUIPMENT at StevenJohnson.com and may not be resold in any form. Fig. 22-17.—Schematic of Du Mont Model 275-A.